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This work shows the relationship of the state variable rock-friction law proposed by Dieterich to the Carlson
and Langer friction law commonly used in the Burridge-Knopoff �BK� model of earthquakes. Further to this,
the Dieterich law is modified to allow slip rates of zero magnitude yielding a three parameter friction law that
is included in the BK system. Dynamic phases of small scale and large scale events are found with a transition
surface in the parameter space. Near this transition surface the event size distribution follows a power law with
an exponent that varies as the transition is approached contrasting with the invariant exponent observed using
the Carlson and Langer friction. This variability of the power-law exponent is consistent with the range of
exponents measured in real earthquake systems and is more selective than the range observed in the Olami-
Feder-Christensen model.
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I. INTRODUCTION

The slow shearing of two tectonic plates results in earth-
quakes, which are a manifestation of stick-slip dynamics.
The earthquake system is simulated by the Burridge-Knopoff
�BK� model �1�. The BK model comprises a spring-block
arrangement and an appropriate friction law allowing dissi-
pation of energy in each block. In many studies of the BK
model the friction law considered has been a simplified ap-
proximation of rock friction without any hysteretic effects
�2–7�. Some have included friction laws that include a state
variable �8� but either are not based on a realistic friction law
or fail to reproduce behavior seen in earthquake systems �9�.
In the case of the BK model’s cellular automata variant, the
Olami-Feder-Christensen �OFC� model �10�, any details of
the dynamic friction have been completely ignored,

��V, f� = ��1 +
V

v f
�−1

if V � 0,

1 if V = 0, f � 1,

f if V = 0, f � 1.
� �1�

The Carlson and Langer �CL� friction law �Eq. �1��, here
expressed in nondimensional form, is frequently used with
the BK model. Here � is the frictional shear stress, V is the
slip rate, v f is a characteristic slip rate scale, and f is the
applied shear force. The CL law is velocity weakening in that
the magnitude of the nondimensional frictional force � de-
creases with increasing slip rate v. The velocity weakening is
a necessary property of the friction for the system to display
dynamic instability revealed in the real world as earthquakes.
Previously, we have shown that the BK system employing
this friction law is a tuned critical system �11�, the tuning �or
control� parameter being a property of the friction. The ne-
cessity of tuning to obtain critical behavior in a homoge-
neous BK system, however, implies the absence of criticality
in general and in particular self-organized criticality �12�.

To achieve a more representative system of an earthquake
fault, one may include a more realistic state variable friction.
Ohmura and Kawamura �9� have looked at the dynamics of
the BK model with the Dieterich and Ruina friction law
�13–15� but they did not find the expected power-law distri-
bution of earthquake size �moment�, instead finding large
scale near periodic events dominating. Here we consider the
Dieterich law of �16�, which is a state variable friction law
that can reproduce laboratory rock-friction experimental re-
sults well. This work explores the relationship between the
CL and Dieterich friction laws, and the dynamics of the BK
model in the parameter space of the Dieterich law.

In Sec. II we will show the relationship between the CL
law and the steady-state Dieterich law. In Sec. III the Diet-
erich law will be modified to be defined at zero slip rate
while maintaining logarithmic healing of the friction. This
represents a development for the BK model system. The dy-
namics of the single-block and multiblock BK models are
then investigated in Secs. IV and V establishing the influence
of the feedback introduced by the state variable, and whether
the two dynamic phases previously observed in the tuned BK
model �17� are observed. The range of b values observed in
the BK model are then compared with that seen in nature and
in the OFC model.

II. FROM THE DIETERICH FRICTION LAW TO THE
CARLSON-LANGER FRICTION LAW

Here we introduce the Dieterich law and show its rela-
tionship with the CL law. The Dieterich law is a state vari-
able law and has an associated fading memory of previous
states. However, if the slip rate is maintained at a constant
velocity V then the state variable approaches its steady state
and the resulting function of V is the steady-state Dieterich
friction law. Here we modify the Dieterich law for its use in
the BK model. Certain limiting boundary conditions are nec-
essary to keep the friction defined at zero slip rate and so that
the coefficient of friction approaches zero at large slip rates.
The resulting friction law is then compared to the CL law.

The Dieterich friction law is given by Eq. �2�,
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� = �0 − A ln�V0

V
+ 1� + B ln��

b
+ 1� , �2a�

d�

dt
= 1 −

V�

Dc
, �2b�

where � is the coefficient of friction, V is the slip rate, and �
is the state variable dependent on time t. The parameters �0,
A, B, V0, b, and Dc are all constants. If one considers Eq. �2�
in the steady state, then �=�ss and d�

dt =0; hence �ss
=Dc /V yielding �ss in Eq. �3�. Letting V1=Dc /b and C=B
−A:

�ss = �0 + A ln�V1 + V

V0 + V
� + C ln�V1

V
+ 1� . �3�

We now impose two conditions on the steady-state friction
that reflects first the velocity weakening necessary for un-
stable stick-slip motion and second the concept of a coeffi-
cient of static friction,

lim
V→�

�ss = 0, �4a�

lim
V→0

�ss = constant. �4b�

The former condition, given by Eq. �4a�, necessitates �0=0.
Rock-friction experiments have found �0 to vary over a wide
range depending on the material and environmental condi-
tions, for example, �0 for granite may vary in the range of
approximately �0.3,0.7� �see �18��. Nevertheless, as the study
here is concerned with the dynamics of the BK model, and
the choice of �0=0 does not affect the dynamics of the sys-
tem in any way �19�, the choice of �0 is arbitrary �4�.

Imposing Eq. �4b� requires C=0 �or equivalently A=B�.
Experimentally, although it is found that B is usually greater
than A, A and B are of the same order of magnitude and so in
the first instance the assumption that A	B is valid. More-
over, it is usually suggested that B must be greater than A to
allow the instability of stick-slip motion to occur but this
criterion for instability is based on an approximation of Eq.
�2�. Employing a linear stability analysis �as in �15�� to Eq.
�2� without approximation, the instability criterion for infi-
nitely slow driving is BV1�AV0, or if A=B, then V1�V0 as
is the case here. As will be seen, this assumption allows the
steady-state coefficient of friction to remain finite at an infi-
nitely slow driving rate and, with modification, the state vari-
able friction also remains finite.

Taking note of this limiting behavior, the maximum fric-
tional shear stress is ��, where � is the normal stress at the
fault,

��ss = �A ln�V1 + V

V0 + V
� .

Naturally, at zero slip speed, ��ss�0�=�A ln�
V1

V0
�, this value

may be used to define a normalized functional form for Eq.
�3� such that the function has values in the range �0,1�, as
with the CL friction law, yielding

	ss
D�V� =

��ss

�A ln�V1

V0
� =

ln�V1 + V

V0 + V
�

ln�V1

V0
� ⇒ 	ss

D�v� =

ln�
 + v
1 + v

�
ln�
�

,

�5�

where 
=
V1

V0
and v= V

V0
is the nondimensional velocity. It was

determined previously �11� for the nondimensional BK
model that the tuning parameter is v f =−� d��V�

dV 
V=0�−1, where
��v� is the dynamical case of the CL friction defined by Eq.
�1�. The equivalent measure may be obtained for Eq. �5�
yielding

v f = − ��d	ss
D�v�
dv

dv
dV
�

v=0
−1

= V0

 ln 



 − 1
.

The Dieterich friction law is firmly based on experimental
observation of rock-friction experiments while the CL fric-
tion law �Eq. �1�� is not, merely being a representation of the
velocity weakening aspect of friction. Nevertheless, the two
friction laws are intimately related. The function 	ss

D may be
obtained in the limit 
→1

lim

→1

	ss
D = lim


→1
��ln 
�−1ln


 + v
1 + v

 = �1 + v�−1 = �1 +
V

v f
�−1

.

�6�

Physically, the limit 
→1 means that the friction law has
only one velocity scale rather than the more general two
velocity scales. This single scale is related to the dimensional
velocity scale Dc /b, being the ratio of the critical slip length
scale �see �20�� to the memory time scale. Clearly, in the
limit 
→1 comparison of Eq. �6� with Eq. �1� shows the
steady-state Dieterich friction law becoming the CL friction
law. Indeed, there is a finite maximum difference between
the friction laws 	ss

D�v� and ��v�, and this maximum is at an
intermediate velocity whereas at small and high velocities
the two laws become the same.

From the preceding analysis we draw the conclusion that
the CL friction law frequently used in the BK model can be
a good approximation of the more realistic law of Eq. �5�, yet
realistic time dependent state effects are not incorporated
into either of these friction laws. Section III seeks to include
such phenomena.

III. VARIANT OF THE DIETERICH LAW

The BK model has been studied previously using the CL
friction law �11,17�; however, as pointed out above this is not
a generally realistic friction law and is a limiting case of the
more realistic Dieterich law. Here we show how a variant of
the Dieterich law can be incorporated explicitly into the BK
model.

The Dieterich friction law �Eq. �2�� includes a state vari-
able � that is, in effect, an evolving time scale as indicated
by its dimensions. This dynamic time scale represents the
delayed reaction of the friction to instantaneous changes in
velocity. The “state” of the friction is merely a dynamically
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evolving scale that in turn may influence the systems dynam-
ics.

It is known that driving a BK system at a finite rate can
change its dynamics, bringing the system through a dynamic
transition as the driving rate is increased �21–23�. It has been
claimed by Vasconcelos �24� that identification of the transi-
tion point �25� can be inaccurate if using a relatively fast
finite driving rate. Here and in our previous work �11,17�,
infinitely slow driving is implemented to avoid the added
complications of dynamic transitions due to finite driving
rates.

For the infinitely slowly driven BK model it is preferable
to use velocity scales rather than time scales for the state
variable of the Dieterich friction law. To do so one defines a
velocity scale containing a fixed length scale and the dy-
namic time scale leading to an evolving velocity scale. Such
a procedure requires a change in variable from � to a veloc-
ity state variable �. Letting �= V�

b and noting that the time
derivative of � is given by

d�

dt
=

V

b

d�

dt
+

�

V

dV

dt

allows the Dieterich friction law to be recast in the form of
Eq. �7�, again imposing on the steady-state coefficient of
friction, �ss, with the conditions given by Eqs. �4a� and �4b�,

� = A ln� � + V

V0 + V
� , �7a�

d�

dt
=

V

b
�1 −

�

V1
 +

�

V

dV

dt
. �7b�

The maximum frictional shear stress, defined by the Dieter-
ich law, is given by �D�V ,T�=��, where � is the normal
stress and T is the applied shear stress, yielding Eq. �8�,

�D�V,T� =��A ln� � + V

V0 + V
� if V � 0 or

�V = 0 and T � �A ln� �

V0
� ,

T otherwise,
� �8a�

��

�t
=

V

b
�1 −

�

V1
 +

�

V

dV

dt
. �8b�

The BK equations of motion for the kth block �denoted by a
subscript� can be written in terms of the friction law of Eq.
�8�, and following the approach in �17�, results in Eqs. �9�
and �10�, which are written in dimensional form,

�D�Vk,Tk = �yFk� =��A ln��k + Vk

V0 + Vk
� if Vk � 0 or

�Vk = 0 and Tk � �A ln��k

V0
� ,

Tk otherwise,
�
�9�

dVk

dt
= Fk −

�D�Vk,�yFk�
�y

, �10a�

dFk

dt
=

� + 2�

�x2 �Vk+1 + Vk−1 − 2Vk� +
2�

�y2 ��̄ − Vk� ,

�10b�

d�k

dt
=

Vk

b
�1 −

�k

V1
 +

�k

Vk

dVk

dt
, �10c�

where  is the mass density, �y is the width of the shear zone
near the fault, �x is the discretization along the fault, �̄ is the
relative velocity of the two tectonic plate surfaces in contact,
and � and � are the Lamé parameters.

To modify the Dieterich law a nondimensionalization of
Eqs. �9� and �10� is first performed using Eq. �A1� �see Ap-
pendix A�, resulting in Eqs. �11�, �12�, and �15�. An impor-
tant point to note in the nondimensionalization is the separa-
tion of time scales of the two main stages of motion for a
body under the influence of the friction: active slip �nonzero
slip rate� and quiescence �zero slip rate�. In these equations
vk is the nondimensional velocity, fk is the nondimensional
applied force, Tk is the nondimensional applied shear stress,
	D is the nondimensional shear stress associated with the
Dieterich friction law, �k is the state variable of the friction
law, s and 
 are nondimensional frictional parameters de-
fined by Eqs. �A1k� and �A1h�, respectively, the subscript k
refers to the kth block, kc and kt are numerical discretiza-
tions, and tA and tQ are the nondimensional time as measured
in the active and quiescent periods, respectively.

Initially quiescence will be considered where t=�QtQ thus

	D�vk,Tk = kt
−1/2fk� =�

if vk � 0 or

s

ln 

ln��k + vk

1 + vk
� vk = 0, and

Tk �
s

ln 

ln �k

Tk otherwise,

�
�11�

�A

�Q

dvk

dtQ
= fk − kt

1/2	D�vk,kt
−1/2fk� , �12a�

dfk

dtQ
=

�Q

�A
�kc�vk+1 + vk−1 − 2vk� − ktvk� + kt, �12b�

d�k

dtQ
=

�Q

�A
vk�1 −

�k



� +

�k

vk

dvk

dtQ
. �12c�

But, during quiescence, vk=0∀k and the applied stress, Tk, is
balanced by the shear friction stress, 	D, until the threshold
defined by Eq. �11� is attained, and so

dvk

dtQ
= 0, �13a�
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dfk

dtQ
= kt, �13b�

d�k

dtQ
=

�k

vk

dvk

dtQ
. �13c�

The right-hand side of Eq. �13c� is undefined during quies-
cence as both vk=0 and

dvk

dtQ
=0. Nevertheless, it is an experi-

mental observation for rock friction that static surfaces in
contact may deform and become better mated leading to the
observed maximum friction increasing logarithmically in
time while contact is static �20�. In the context of Eq. �13�
this implies that �k must increase linearly in time while the
kth block is static. In Eq. �13c� the rate of change in �k
during quiescence must then be constant. To satisfy this, a
constant � is written in place of

�k

vk

dvk

dtQ
. This constitutes the

major modification �as opposed to specialization� of the Di-
eterich friction law that removes the singularity at vk=0 per-
mitting infinitely slow driving. However, it must be reem-
phasized that this modification is empirically motivated and
not an arbitrary substitution. Equation �13c� now reads

d�k

dtQ
= � . �14�

Turning the attention to the active period �with t=�AtA�,
again using nondimensionalizations defined by Eq. �A1�, re-
sults in

dvk

dtA
= fk − kt

1/2	D�vk,Tk = kt
−1/2fk� , �15a�

dfk

dtA
= kc�vk+1 + vk−1 − 2vk� + kt� �A

�Q
− vk� , �15b�

d�k

dtA
= vk�1 −

�k



 +

�A

�Q
� , �15c�

noting that
�k

vk

dvk

dtA
=

�A

�Q

�k

vk

dvk

dtQ
because tA=

�Q

�A
tQ. But if the system

is infinitely slowly driven �26�
�A

�Q
→0, and so the equations

of motion of a block with nonzero slip rate is given by Eqs.
�11� and �16�,

dvk

dtA
= fk − kt

1/2	D�vk,Tk = kt
−1/2fk� , �16a�

dfk

dtA
= kc�vk+1 + vk−1 − 2vk� − ktvk, �16b�

d�k

dtA
= vk�1 −

�k



 . �16c�

At threshold the system has at least one block, i, with

f i =
kt

1/2s

ln 

ln �i.

A block satisfying this relationship corresponds to the ap-
plied shear stress through the bulk medium due to the driving

being balanced by the maximum shear stress due to the fric-
tion at the surface leaving a net shear stress of zero at the
surface of the block. However, as the system is infinitely
slowly driven a perturbation to the stress �or velocity� is
necessary to initiate events. Such a perturbation must be
small enough that the overall response of the system is inde-
pendent of its size. Here, the perturbation is made to the
stress of the threshold block. If there are many threshold
blocks the perturbation is applied to only one. The perturba-
tion of the stress Tk comprises the following operation

Tk � Tk + �
s ln �k

ln 

,

where � controls the size of the perturbation scaled by the
local static friction. It is assumed that the perturbation is
small and so ��1.

To summarize, for infinitely slow driving of the system
there exists two sets of differential equations corresponding
to the slow behavior of quiescence �Eq. �14�� and the fast
behavior of activity �Eq. �16��. The parameter space has
three degrees of freedom: 
, the steady-state attractor for the
state variable, s, the maximum steady-state value of the fric-
tion law, and �, the healing rate of the state variable. In the
following investigation this parameter space will be exam-
ined initially in a single-block system and then in multiblock
systems where finite-size effects and spatial interactions may
also be examined.

IV. SINGLE-BLOCK SYSTEM

The system defined by Eqs. �14� and �16� is investigated
initially for a single-block system with kc=kt=1, which also
means that the shear stress and force are equal and inter-
changeable, Tk= fk. There remains three free parameters, un-
like the BK system previously examined �11,17�, which has
just one. Nevertheless, unless the system dynamically brings
itself to some preferred state regardless of the parameters,
dynamic phases of different size events may be expected as
previously reported for the BK model with CL friction law
�17,25�. The size of an earthquake event is the moment M
representing the net slip along the fault during an earthquake
event, here defined by

M = �
k
�

t0

t0+�tA

vkdtA, �17�

where the event starts at tA= t0, has a duration of �tA and the
sum is over all blocks.

The existence of these phases is readily observed in Fig. 1
where the steady-state moment is plotted as a function of 

−1 and � keeping s=1.6. The boundary between these
phases marks a phase transition and as the moment contours
of Fig. 2 show, this is a sharp transition with the moment
dropping three decades over a small region of parameter
space. This may be indicative of a first-order transition simi-
lar to the case for the single-block BK system under the
influence of the CL friction law. Transitions between small
scale and large scale phases are observed by varying any of
the three frictional parameters 
, �, and s, which form a
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three-dimensional parameter space for the system with asso-
ciated coordinates. Figure 3 shows this parameter space for
the single-block system partitioned by a transition surface
into large scale and small scale event phases. Dots in blue
�above the transition surface� are associated with frictional
parameters leading to small events ��10−2� and dots in red
�below the transition surface� are associated with frictional
parameters leading to large events ��10−2�. The transition
surface itself was generated by linear interpolation of the
event size between adjacent large �red� and small �blue� scale
event points in phase space to an event of moment equal to
10−2.

The single-block system goes through an initial transient
and its state space trajectory approaches a limit cycle, the
details of which are dependent on the system’s position in
the parameter space �see Fig. 4�. In general, it is observed
that the limit cycles are confined to more and more restricted
region of state space as the transition to the small scale event
phase is approached.

For multiblock systems these limit cycles are no longer
observed as the system exhibits complexity. However, the

single-block system provides clues as to what may be ex-
pected of the multiblock system, namely, the existence of
two phases and a transition surface/region in parameter
space. In view of this, attention is now turned to character-
ization of the multiblock system. Following the methodology
of our previous work �11� this would allow any shifting of
the transition, due to the finite size of the system, to be
observed.

V. CHARACTERIZING THE MULTIBLOCK SYSTEM
TRANSITION

In Sec. IV the single-block system of the BK model was
investigated using the newly derived healing friction. It was
seen that, by varying the system parameters, a phase transi-
tion was observed from large to small events. Figure 5 shows
a similar phase transition for the multiblock system. How-
ever, the system now demonstrates a power-law region as

M(γ-1, κ) with s=1.6

10 1

10 0

10-1

10-2

10-3

10-4

10-5

10-6

0.6 0.8 1 1.2 1.4 1.6 1.8 2
γ-1 0.5

1
1.5

2
2.5

3

κ

10-7
10-5
10-3
10-1
101

Moment

FIG. 1. �Color online� The statistically steady-state event mo-
ment, M, of a single-block system as a function of 
−1 and �, at
fixed s=1.6. A perturbation of 10−8 to the threshold block stress is
applied. Moment contours are indicated at the base of the figure and
in Fig. 2.

Moment contours for s=1.6

10 1

10 0

10-1

10-2

10-3

10-4

10-5

10-6

1
γ-1

1

κ

FIG. 2. �Color online� The contours of the moment surface in
Fig. 1. The moment contours from 1 to 10−3 are nearby in parameter
space, indicative of a sharp change in behavior.

FIG. 3. �Color online� The transition surface with moment 0.01,
determined by linear interpolation, separates the parameter space
into a large scale event phase �below the surface� and a small scale
event phase �above the surface�.
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γ=2.0
γ=2.2
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-20
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FIG. 4. �Color online� The state space trajectory, which is a
stable limit cycle, for the single-block system with s=1.6 and �
=1.75, varying 
� �1.3,2 ,2.2,2.4,2.6�. As the transition surface is
approached, the cycle is contained in a smaller and smaller region
of state space.
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previously observed for the BK model with the CL friction
law, suggesting a critical transition. What follows is a char-
acterization of this transition.

Here, measures of a 10 and a 100 block system are inves-
tigated. There are a number of paths through the transition
surface that may be taken and are essentially arbitrary but a
path with the transition at 
	2 is chosen to avoid extreme
values of 
 in calculations. This path through parameter
space is defined by �s=1,�=3,
� with 
 varying through the
transition. Results from the system with �s=1,�=3,
	2�
�see Fig. 6� yield moment probability density distribution
�PDD� indicating a transition and are approximately power
law in nature with a minor excess of large events.

To characterize the transition an appropriate measure
would be the system’s mean local stress difference before an
event, ��, between the local stress, f , and local stress thresh-
old, F0=

s ln �k

ln 
 ; hence

�� = �F0 − f� ,

where averages are over space �represented by the bar, ·̄� at
the initiation of each event, averaged over many events, de-
noted as � · �.

Figure 7 plots �� as a function of 
 showing the transition
to the small scale moment event phase. In the small scale
phase the measure suggests that the system as a whole re-
mains close to the frictional threshold with only small re-
leases of stress that do not remove the system from this po-
sition. This is representative of a creeping or stable sliding
phase for a finitely driven system. The transition to this
phase occurs at higher values of 
 than the moment PDDs
would suggest, 
=2.3 for the ten block system and 
=2.6
for the 100 block system. Nevertheless, this is similar to the
behavior seen for the CL friction law BK model where the
region of power-law behavior is below the transition indi-
cated by a study of a similar measure in that system �see
�11��. In addition to this similarity, it would also appear that
the transition point shifts with increasing system size.

Using scales associated with a real earthquake system,
Ohmura and Kawamura �9� determined appropriate param-
eter values for their nondimensionalized friction law. Here it
is assumed �27� that the normal stress at the fault perpendicu-
lar to the fault plane is �=112 MPa, the shear modulus �
=26 GPa, and the mass density of the rock is 

=2700 kg m−3 leading to an S-wave speed of ��
 =3.1

�103 m s−1. Using estimates by Ohmura and Kawamura �9�
for characteristic slip length and time, we estimate that V0
	10−2 m s−1. The coefficient A is then calculated as

A =
V0

�
��



s

ln 

	 10−3 s

ln 

.

If s=1 and 
=2 then

A 	 10−3.

This value for A is in agreement with the value expected
from rock-friction experiments of A from 10−3 to 10−2 �9�.
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The frictional parameter A near the transition is then consis-
tent with real earthquake systems.

Figure 8 shows the moment PDDs for a 100 block system
in the range 
� �2.05,2.35�. There are two general features
of these PDDs. First, large scale moments are power-law
distributed having an exponent magnitude that decreases
with increasing 
. Second, small scale moments appear to
follow a distribution similar to lognormal or exponential dis-
tributions. In contrast to the power-law behavior here,
Ohmura and Kawamura �9� observed near periodic large
scale events dominating the distribution of moments for their
investigation of the Dieterich and Ruina state variable fric-
tion laws. However, in Ohmura’s work the stiffness param-
eter l=

kc

kt
=3, whereas here kc=kt. The parameter space where

kc�kt has been shown to exhibit large scale quasiperiodic
delocalized events that are lost when kc=kt �17�.

The variation in the power-law exponent is of interest
because, if the system is critical throughout, a changing
power-law exponent suggests the absence of a universality
class for the system.

Schorlemmer et al. �28� investigated the variation in b
values based on earthquake catalogs and found an approxi-
mate range for the b value from 0.6 to 1.1. Figure 9 shows
the tuning of the power-law exponent of the distribution of
moments measured in the model investigated here. In earth-
quake systems the b value is the exponent associated with
the cumulative probability distribution of magnitudes of
events �29�. The power-law exponent of the distribution of
moments measured here is then b+1. The range of exponents
through the transition seen in Fig. 9 is from about 1.4–1.9.
Here the measured exponent for 
=2.35 is ignored due to the
large uncertainty of the measure. These power-law exponents
yield b values from 0.4 to 0.9, similar to those expected for
real earthquake faults.

A varying power-law exponent is also seen in the OFC
model �10� with a larger range of b values to the range ob-
served in both Fig. 9 and real earthquake systems. The range
observed in the OFC model spans b values from less than 0.5

to approximately 2.5 �10�, far beyond the bounds of what is
observed in nature. It could be that the large and small scale
dynamic phases, particularly the former that is not observed
in the OFC model, preclude the b values outside the ranges
seen in nature and here in the BK model.

The OFC model does not exhibit any small scale feature
such as that observed here. A system with a region, as op-
posed to a point, in parameter space that exhibits power-law
behavior might be considered a bounded SOC system, as
indeed the OFC model is. However, this cannot be the case
here because of the presence of the small scale feature that
must have an associated scale. It must be determined if this
small scale feature is a numerical artifact or not. This small
scale feature is not a numerical time integration artifact
based on experiments that varied the time step. The resulting
moment PDDs for different time steps showed no significant
differences indicating that the small scale feature is a valid
feature of the numerical solution.

In contrast, the small scale feature is dependent on the
perturbation used to initiate events as can be seen in Fig. 10.
As the perturbation is decreased the small scale feature re-
cedes to smaller and smaller scales while exposing a greater
extent of the power law. While the perturbation is a numeri-
cal tool in this model, it is postulated that the small scale
feature is a reflection of the creep behavior of the small scale
phase while the power-law feature represents events in the
stick-slip phase, i.e., the two dynamic phases coexist. Creep
events in real earthquake systems are small events that attain
only small velocities. They also occur at a nearly constant
rate on large time scales accounting for the “secular creep on
the fault” �30�. Yet creep behavior is also found alongside the
power-law distributed behavior usually associated with
earthquakes. Indeed, a laboratory experiment of stick-slip be-
havior has also been seen to exhibit a mixed phase �31�. It
may then come as no surprise that a mixed stick-slip/creep
phase is observed here.

From the results above, in the order of increasing 
 the
system exhibits a large scale phase, power-law moment
PDD, a mixed phase of power-law distributed large events
and creep, and a creep phase. Large scale power laws are
observed over a region of parameter space that must occupy
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a finite volume, with exponents varying in a range similar to
that of real earthquake behavior and a range that is a subset
of those seen in the OFC model.

VI. CONCLUSIONS

The Burridge-Knopoff �BK� model has been investigated
with a variant of the Dieterich state variable friction law that
more realistically represents rock friction. In this work it has
been shown that the Carlson and Langer friction law is
equivalent to the Dieterich friction law in the limit that the
steady-state coefficient of friction �ss tends to zero for infi-
nite slip rate, �ss tends to a finite value for zero slip rate, and
the two velocity scales of the Dieterich law become equal.
The Dieterich friction law has been modified by ensuring a
linear growth of the state variable during quiescence to allow
the system to remain well defined at zero slip rate and retain
the logarithmic increase in friction with time empirically ob-
served in real rock friction. Applying this friction law to a
single-block system, an apparent first-order transition is seen
as previously found for the Carlson and Langer law. For a
multiblock system, using the Dieterich law operating in a
region of parameter space consistent with real rock friction, a
continuous transition from large scale event size to small
scale event size is observed. Near this transition, event sizes
are distributed as a power law with exponents that vary as
the transition is approached, suggesting the absence of uni-
versality in the system. In addition, this exponent may be
tuned leading to b values over an approximate range of 0.4–
0.9, which encompasses much of the range of b values ob-
served in nature, observed to be approximately from 0.6 to
1.1 �28�.
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APPENDIX: NONDIMENSIONALIZATION
OF THE BK MODEL

Nondimensionalization of Eq. �10� is performed using Eq.
�A1�

x = lxx
�, �A1a�

y = lyy
�, �A1b�

t = �QtQ = �AtA, �A1c�

�̄/V0 =
�A

�Q
, �A1d�

�� + 2�


=

lx

�A
, �A1e�

�2�


=

ly

�A
, �A1f�

Vk/V0 = vk, �A1g�

V1/V0 = 
 , �A1h�

�k/V0 = �k, �A1i�

b = �A, �A1j�

�A/V0 =
ly

�A

s

ln 

, �A1k�

Fk/V0 =
1

�A
fk, �A1l�

�D/V0 =
ly

�A
	D, �A1m�

Tk/V0 =
ly

�A
Tk, �A1n�

kc = ��x��−2, �A1o�

kt = ��y��−2, �A1p�

where tQ is the time measured during quiescence and tA that
measured during activity, the corresponding scales are �Q
and �A, respectively.

Equations �A1a�–�A1c� are assigning appropriate length
and time scales for the system. The other choices for nondi-
mensionalization can be understood by dividing Eqs.
�10a�–�10c� by V0 yielding

d

dt

Vk

V0
=

Fk

V0
−

�D�Vk,�yFk�
V0�y

, �A2a�
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FIG. 10. The effect of different perturbations on the small scale
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d

dt

Fk

V0
=

� + 2�

�x2 �Vk+1

V0
+

Vk−1

V0
− 2

Vk

V0
� +

2�

�y2� �̄

V0
−

Vk

V0
� ,

�A2b�

d

dt

�k

V0
=

Vk

bV0
�1 −

V0�k

V0V1
 +

�k

Vk

d

dt

Vk

V0
. �A2c�

This suggests the set of nondimensional variables associated
with Eqs. �A1g�–�A1i�. In addition, it is noted that Fk is an
acceleration and so the fraction

Fk

V0
has the dimensions of

inverse time. The scale associated with this is the active time
scale �A, leading to Eq. �A1l�.

Using Eqs. �A1g�–�A1i� and �A1l� result in

dvk

dt
=

fk

�A
−

�D�Vk,�yFk�
V0�y

, �A3a�

1

�A

dfk

dt
=

� + 2�

�x2 �vk+1 + vk−1 − 2vk� +
2�

�y2� �̄

V0
− vk� ,

�A3b�

d�k

dt
=

vk

b
�1 −

�k



 +

�k

vk

dvk

dt
. �A3c�

The constants �̄
V0

and b are still in dimensional form but may
be associated with time scales.

The first of these, �̄
V0

, is a ratio of two velocity scales and
is therefore already dimensionless, but how is this related to
the scales of the system? Both velocities are in the x direc-
tion and as such are associated with the length scale lx. How-
ever, �̄ is a very slow velocity associated with the driving
and hence quiescent time scale �Q. In contrast, V0 is a veloc-
ity associated with the dynamic friction and may be associ-
ated with the active time scale �A. The ratio of the two ve-
locity scales then results in Eq. �A1d�.

The second example b is a parameter associated with the
dynamic friction. This parameter has the dimensions of time

and is a natural choice in defining the active time scale �A
leading to Eq. �A1j�.

Equations �A1k�, �A1m�, and �A1n� are all associated
with nondimensionalizing a shear stress. Shear stress has di-
mensions of force per unit area. For example, the shear stress
T in Eq. �A1n� may be decomposed as

T = �lxlylz

lxlz
� lx

�A
2 T = T

lxly

�A
2 ,

where x and z are the orthogonal axes defining the frictional
contact area lxlz. Equation �A1n� follows from the relation
V0�

lx

�A
. The same arguments hold for Eqs. �A1k� and �A1m�.

Finally, the compressional and transverse wave speeds as-
sociated with the bulk medium are ��+2�

 and ��
 , respec-

tively. These waves have velocity along the x and y direc-
tions, respectively, and so the substitutions of Eqs. �A1e� and
�A1f� may then be made.

In addition to all these, the substitutions of Eqs. �A1o� and
�A1p� are made where the nondimensional discretizations
�x� and �y� are associated with the spring constants of the
BK model. Equation �A3� becomes �with simplification�

�A
dvk

dt
= fk − kt

1/2	D, �A4a�

�A
dfk

dt
= kc�vk+1 + vk−1 − 2vk� + kt� �A

�Q
− vk� , �A4b�

d�k

dt
=

vk

�A
�1 −

�k



 +

�k

vk

dvk

dt
. �A4c�

The same substitutions may be made for Eq. �9� leading to
Eq. �11�. Note that the time t has not as yet been nondimen-
sionalized. There is a choice associated with this step as
implied by Eq. �A1c� where two possibilities are given, ei-
ther t=�QtQ or t=�AtA, and each choice results in Eqs. �12�
and �14�, respectively.
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